libsidplayfp  2.0.2
spline.h
1 // ---------------------------------------------------------------------------
2 // This file is part of reSID, a MOS6581 SID emulator engine.
3 // Copyright (C) 2010 Dag Lem <resid@nimrod.no>
4 //
5 // This program is free software; you can redistribute it and/or modify
6 // it under the terms of the GNU General Public License as published by
7 // the Free Software Foundation; either version 2 of the License, or
8 // (at your option) any later version.
9 //
10 // This program is distributed in the hope that it will be useful,
11 // but WITHOUT ANY WARRANTY; without even the implied warranty of
12 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 // GNU General Public License for more details.
14 //
15 // You should have received a copy of the GNU General Public License
16 // along with this program; if not, write to the Free Software
17 // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 // ---------------------------------------------------------------------------
19 
20 #ifndef RESID_SPLINE_H
21 #define RESID_SPLINE_H
22 
23 namespace reSID
24 {
25 
26 // Our objective is to construct a smooth interpolating single-valued function
27 // y = f(x).
28 //
29 // Catmull-Rom splines are widely used for interpolation, however these are
30 // parametric curves [x(t) y(t) ...] and can not be used to directly calculate
31 // y = f(x).
32 // For a discussion of Catmull-Rom splines see Catmull, E., and R. Rom,
33 // "A Class of Local Interpolating Splines", Computer Aided Geometric Design.
34 //
35 // Natural cubic splines are single-valued functions, and have been used in
36 // several applications e.g. to specify gamma curves for image display.
37 // These splines do not afford local control, and a set of linear equations
38 // including all interpolation points must be solved before any point on the
39 // curve can be calculated. The lack of local control makes the splines
40 // more difficult to handle than e.g. Catmull-Rom splines, and real-time
41 // interpolation of a stream of data points is not possible.
42 // For a discussion of natural cubic splines, see e.g. Kreyszig, E., "Advanced
43 // Engineering Mathematics".
44 //
45 // Our approach is to approximate the properties of Catmull-Rom splines for
46 // piecewice cubic polynomials f(x) = ax^3 + bx^2 + cx + d as follows:
47 // Each curve segment is specified by four interpolation points,
48 // p0, p1, p2, p3.
49 // The curve between p1 and p2 must interpolate both p1 and p2, and in addition
50 // f'(p1.x) = k1 = (p2.y - p0.y)/(p2.x - p0.x) and
51 // f'(p2.x) = k2 = (p3.y - p1.y)/(p3.x - p1.x).
52 //
53 // The constraints are expressed by the following system of linear equations
54 //
55 // [ 1 xi xi^2 xi^3 ] [ d ] [ yi ]
56 // [ 1 2*xi 3*xi^2 ] * [ c ] = [ ki ]
57 // [ 1 xj xj^2 xj^3 ] [ b ] [ yj ]
58 // [ 1 2*xj 3*xj^2 ] [ a ] [ kj ]
59 //
60 // Solving using Gaussian elimination and back substitution, setting
61 // dy = yj - yi, dx = xj - xi, we get
62 //
63 // a = ((ki + kj) - 2*dy/dx)/(dx*dx);
64 // b = ((kj - ki)/dx - 3*(xi + xj)*a)/2;
65 // c = ki - (3*xi*a + 2*b)*xi;
66 // d = yi - ((xi*a + b)*xi + c)*xi;
67 //
68 // Having calculated the coefficients of the cubic polynomial we have the
69 // choice of evaluation by brute force
70 //
71 // for (x = x1; x <= x2; x += res) {
72 // y = ((a*x + b)*x + c)*x + d;
73 // plot(x, y);
74 // }
75 //
76 // or by forward differencing
77 //
78 // y = ((a*x1 + b)*x1 + c)*x1 + d;
79 // dy = (3*a*(x1 + res) + 2*b)*x1*res + ((a*res + b)*res + c)*res;
80 // d2y = (6*a*(x1 + res) + 2*b)*res*res;
81 // d3y = 6*a*res*res*res;
82 //
83 // for (x = x1; x <= x2; x += res) {
84 // plot(x, y);
85 // y += dy; dy += d2y; d2y += d3y;
86 // }
87 //
88 // See Foley, Van Dam, Feiner, Hughes, "Computer Graphics, Principles and
89 // Practice" for a discussion of forward differencing.
90 //
91 // If we have a set of interpolation points p0, ..., pn, we may specify
92 // curve segments between p0 and p1, and between pn-1 and pn by using the
93 // following constraints:
94 // f''(p0.x) = 0 and
95 // f''(pn.x) = 0.
96 //
97 // Substituting the results for a and b in
98 //
99 // 2*b + 6*a*xi = 0
100 //
101 // we get
102 //
103 // ki = (3*dy/dx - kj)/2;
104 //
105 // or by substituting the results for a and b in
106 //
107 // 2*b + 6*a*xj = 0
108 //
109 // we get
110 //
111 // kj = (3*dy/dx - ki)/2;
112 //
113 // Finally, if we have only two interpolation points, the cubic polynomial
114 // will degenerate to a straight line if we set
115 //
116 // ki = kj = dy/dx;
117 //
118 
119 
120 #if SPLINE_BRUTE_FORCE
121 #define interpolate_segment interpolate_brute_force
122 #else
123 #define interpolate_segment interpolate_forward_difference
124 #endif
125 
126 
127 // ----------------------------------------------------------------------------
128 // Calculation of coefficients.
129 // ----------------------------------------------------------------------------
130 inline
131 void cubic_coefficients(double x1, double y1, double x2, double y2,
132  double k1, double k2,
133  double& a, double& b, double& c, double& d)
134 {
135  double dx = x2 - x1, dy = y2 - y1;
136 
137  a = ((k1 + k2) - 2*dy/dx)/(dx*dx);
138  b = ((k2 - k1)/dx - 3*(x1 + x2)*a)/2;
139  c = k1 - (3*x1*a + 2*b)*x1;
140  d = y1 - ((x1*a + b)*x1 + c)*x1;
141 }
142 
143 // ----------------------------------------------------------------------------
144 // Evaluation of cubic polynomial by brute force.
145 // ----------------------------------------------------------------------------
146 template<class PointPlotter>
147 inline
148 void interpolate_brute_force(double x1, double y1, double x2, double y2,
149  double k1, double k2,
150  PointPlotter plot, double res)
151 {
152  double a, b, c, d;
153  cubic_coefficients(x1, y1, x2, y2, k1, k2, a, b, c, d);
154 
155  // Calculate each point.
156  for (double x = x1; x <= x2; x += res) {
157  double y = ((a*x + b)*x + c)*x + d;
158  plot(x, y);
159  }
160 }
161 
162 // ----------------------------------------------------------------------------
163 // Evaluation of cubic polynomial by forward differencing.
164 // ----------------------------------------------------------------------------
165 template<class PointPlotter>
166 inline
167 void interpolate_forward_difference(double x1, double y1, double x2, double y2,
168  double k1, double k2,
169  PointPlotter plot, double res)
170 {
171  double a, b, c, d;
172  cubic_coefficients(x1, y1, x2, y2, k1, k2, a, b, c, d);
173 
174  double y = ((a*x1 + b)*x1 + c)*x1 + d;
175  double dy = (3*a*(x1 + res) + 2*b)*x1*res + ((a*res + b)*res + c)*res;
176  double d2y = (6*a*(x1 + res) + 2*b)*res*res;
177  double d3y = 6*a*res*res*res;
178 
179  // Calculate each point.
180  for (double x = x1; x <= x2; x += res) {
181  plot(x, y);
182  y += dy; dy += d2y; d2y += d3y;
183  }
184 }
185 
186 template<class PointIter>
187 inline
188 double x(PointIter p)
189 {
190  return (*p)[0];
191 }
192 
193 template<class PointIter>
194 inline
195 double y(PointIter p)
196 {
197  return (*p)[1];
198 }
199 
200 // ----------------------------------------------------------------------------
201 // Evaluation of complete interpolating function.
202 // Note that since each curve segment is controlled by four points, the
203 // end points will not be interpolated. If extra control points are not
204 // desirable, the end points can simply be repeated to ensure interpolation.
205 // Note also that points of non-differentiability and discontinuity can be
206 // introduced by repeating points.
207 // ----------------------------------------------------------------------------
208 template<class PointIter, class PointPlotter>
209 inline
210 void interpolate(PointIter p0, PointIter pn, PointPlotter plot, double res)
211 {
212  double k1, k2;
213 
214  // Set up points for first curve segment.
215  PointIter p1 = p0; ++p1;
216  PointIter p2 = p1; ++p2;
217  PointIter p3 = p2; ++p3;
218 
219  // Draw each curve segment.
220  for (; p2 != pn; ++p0, ++p1, ++p2, ++p3) {
221  // p1 and p2 equal; single point.
222  if (x(p1) == x(p2)) {
223  continue;
224  }
225  // Both end points repeated; straight line.
226  if (x(p0) == x(p1) && x(p2) == x(p3)) {
227  k1 = k2 = (y(p2) - y(p1))/(x(p2) - x(p1));
228  }
229  // p0 and p1 equal; use f''(x1) = 0.
230  else if (x(p0) == x(p1)) {
231  k2 = (y(p3) - y(p1))/(x(p3) - x(p1));
232  k1 = (3*(y(p2) - y(p1))/(x(p2) - x(p1)) - k2)/2;
233  }
234  // p2 and p3 equal; use f''(x2) = 0.
235  else if (x(p2) == x(p3)) {
236  k1 = (y(p2) - y(p0))/(x(p2) - x(p0));
237  k2 = (3*(y(p2) - y(p1))/(x(p2) - x(p1)) - k1)/2;
238  }
239  // Normal curve.
240  else {
241  k1 = (y(p2) - y(p0))/(x(p2) - x(p0));
242  k2 = (y(p3) - y(p1))/(x(p3) - x(p1));
243  }
244 
245  interpolate_segment(x(p1), y(p1), x(p2), y(p2), k1, k2, plot, res);
246  }
247 }
248 
249 // ----------------------------------------------------------------------------
250 // Class for plotting integers into an array.
251 // ----------------------------------------------------------------------------
252 template<class F>
254 {
255  protected:
256  F* f;
257 
258  public:
259  PointPlotter(F* arr) : f(arr)
260  {
261  }
262 
263  void operator ()(double x, double y)
264  {
265  // Clamp negative values to zero.
266  if (y < 0) {
267  y = 0;
268  }
269 
270  f[int(x)] = F(y + 0.5);
271  }
272 };
273 
274 } // namespace reSID
275 
276 #endif // not RESID_SPLINE_H
reSID::PointPlotter
Definition: spline.h:254